首页> 外文OA文献 >Isomorphism of the groups of Vassiliev invariants of Legendrian and pseudo-Legendrian knots
【2h】

Isomorphism of the groups of Vassiliev invariants of Legendrian and pseudo-Legendrian knots

机译:传奇和假传奇传说的瓦西里耶夫不变量群的同构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of the Vassiliev invariants of Legendrian knots was started by D. Fuchs and S. Tabachnikov who showed that the groups of C-valued Vassiliev invariants of Legendrian and of framed knots in the standard contact R3 are canonically isomorphic. Recently we constructed the first examples of contact 3-manifolds where Vassiliev invariants of Legendrian and of framed knots are different. Moreover in these examples Vassiliev invariants of Legendrian knots distinguish Legendrian knots that are isotopic as framed knots and homotopic as Legendrian immersions. This raised the question what information about Legendrian knots can be captured using Vassiliev invariants. Here we answer this question by showing that for any contact 3-manifold with a cooriented contact structure the groups of Vassiliev invariants of Legendrian knots and of knots that are nowhere tangent to a vector field that coorients the contact structure are canonically isomorphic.
机译:D. Fuchs和S. Tabachnikov着手研究Legendrian结的Vassiliev不变量,他们证明了标准接触R3中Legendrian的C值Vassiliev不变量和框架结的组是正则同构的。最近,我们构造了接触三流形的第一个示例,其中Legendrian和框架结的Vassiliev不变量是不同的。此外,在这些示例中,Legendrian结的Vassiliev不变量将同位素结为框架结的同位异义点和Legendrian浸没的同位异点。这就提出了一个问题,即使用Vassiliev不变量可以捕获有关Legendrian节的信息。在这里,我们通过显示对于具有同向接触结构的任何接触3形流形来回答这个问题,Legendrian结的Vassiliev不变量和与协调该接触结构的矢量场不相切的结的组是正则同构的。

著录项

  • 作者

    Tchernov, V;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号